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The numerical prediction of droplet deformation and break-up
using the Godunov marker-particle projection scheme
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SUMMARY

The problem of droplet deformation and break-up is considered. A hybrid Eulerian–Lagrangian method is
used in which the velocity and pressure are discretized on a fixed mesh and Lagrangian particles are used
to implicitly track the interface between the two phases. The Navier–Stokes equations are solved using
an approximate Godunov projection method, collectively called the Godunov marker-particle projection
scheme. The results show good qualitative agreement with previous research as well as demonstrating the
efficacy of the method. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An understanding of the break-up of fluid droplets is important in a wide variety of industrial,
engineering and natural processes. Typically, such two-fluid processes range over microscopic to
macroscopic scales. Microscopic droplet formation and manipulation are important processes in
DNA analysis, protein crystallization, analysis of human physiological fluids, ink jet printing and
chemical processing. At larger scales, droplet dynamics play a role in the automotive industry such
as in fuel sprays and fuel injection systems.

The droplet break-up process is governed by the interplay of viscous and inertial forces, tending
to deform the droplet, and capillary forces that attempt to restore deformed droplets to an equi-
librium shape. Experimental studies [1] have shown that the break-up process is governed by the
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Ohnesorge number, Oh=�d/
√

�dD0�ad, which reflects the effect of droplet viscosity on droplet
break-up, although viscous effects play no role when Oh<0.1 [2]. In addition, the droplet break-up
regimes are characterized by the initial Weber number, Wei =�aD0U 2

0 /�ad, which represents the
ratio of disruptive hydrodynamic force to stabilizing force. Observations indicate that there are
three distinct mechanisms of droplet break-up: droplet deformation, boundary layer stripping and
surface disturbances caused by the Kelvin–Helmholtz and Rayleigh–Taylor instabilities [3]. The
various break-up modes are defined as vibrational (Wei�12), bag (12<Wei�50), bag-and-stamen
break-up (50<Wei�100) as well as sheet stripping (100<Wei�350) and catastrophic break-up
(Wei>350) [2].

A simplified two-dimensional, incompressible fluid dynamical model of a translating fluid
droplet (d), of density �d, viscosity �d, initial droplet diameter D0, surface tension coefficient �ad
and initial relative velocity U0, immersed in an immiscible, ambient (a) fluid, of density �a and
viscosity �a, is used in this paper. While some aspects of droplet break-up are a three-dimensional
phenomenon, a two-dimensional simulation can still provide a good deal of insight into the break-up
process and may be qualitatively compared with experimental results [3, 4]. Although the structure
of fluid interfaces is a complex molecular process, the macroscopic properties of interfacial flow
can be adequately captured through use of surface force models. One such model, that of Brackbill
et al. [5], will be used in this paper.

The numerical solution of two-phase flow problems remains a difficult task. Such a numer-
ical method must be able to accurately track multiple fluid interfaces while maintaining stability
in the presence of density discontinuities and, in the case of incompressible fluids, ensuring
a solenoidal velocity field. Typically, Eulerian-fixed grid methods, such as VOF, possess the
advantage of allowing multiple fluid interfaces to undergo large deformation without loss of
accuracy, although making the calculation of the interface itself inaccurate. Lagrangian methods,
on the other hand, while being able to accurately determine material interfaces, suffer from the
generation of distorted meshes for strong interfacial deformation. A hybrid Eulerian–Lagrangian
method, where the advection of fluid phase is handled in a Lagrangian manner while fluid
velocity and pressure information is constructed on a fixed Eulerian grid, makes use of both
approaches.

One such method, the Godunov marker-particle projection scheme (GMPPS) [6], has been used
to simulate two-phase flows such as a water droplet falling into a pool of water [7] as well as
the impact of a fluid droplet onto a solid surface [8]. It possesses several advantages over older
methods such as VOF or the MAC method. The method is inherently second-order accurate in time
and space using an approximate projection method as well as Godunov upwinding to deal with
high Reynolds number flows [9], an improvement on the first-order accuracy of the MAC method.
In addition, permanently assigned marker particles are used to transport fluid phase information
avoiding the artificial smoothing prevalent in VOF methods [6]. The method has not yet been used
to model the droplet break-up process. The main aim of this paper is to examine the performance
of the GMPPS for such problems.

2. GOVERNING EQUATIONS

We consider a one-field formulation of the governing equations for unsteady incompressible flow.
The Navier–Stokes equations are solved in the domain �={(x, y) :0<x<X, 0<y<Y }. Thus, for
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two-phase flow, the governing equations expressed in dimensionless form are

�u
�t

+(u·∇)u = −1

�
∇ p+ 1

�Re
∇ ·�(∇u+(∇u)T)+ �(x)∇�

We[�]〈�〉
∇ ·u = 0

�C
�t

+u·∇C = 0

� = C+(1−C)�ad

� = (C+(1−C)/�ad)
−1

(1)

where we have non-dimensionalized length with respect to D0, velocity with respect to U0, density
with respect to �d, viscosity with respect to �d, pressure with respect to �dU

2
0 and the convective

time with respect to D0/U0. The Reynolds number is defined by Re=�dU0D0/�d and we have
used �ad=�a/�d, �ad=�a/�d. The volume fraction C=Cd so that Ca=1−Cd. The surface force
term is expressed through the curvature �(x)=∇ ·n where n=∇�/|∇�| is the normal to the
interface, the jump in density across the interface is [�]=1−�ad and average of the densities is
given by 〈�〉=(1+�ad)/2.

Boundary conditions are a specified constant velocity, u(0, y, t)= i, on the inflow boundary of
the domain, whereas we use the free boundary conditions, considered as streamlines, of Jin and
Braza [10] on the upper and lower boundaries: �u(x,0;Y, t)/�y=0, v(x,0;Y, t)=0. Zhu [11]
argues that the boundary conditions at outflow should be �u(X, y, t)/�n=0 and we have adopted
this condition. No flux conditions on the density, viscosity and consequently the volume fraction
are used for all boundaries, i.e. n·∇�|�� =n·∇�|�� =n·∇C |�� =0. Note that the flow is fully
two-dimensional without use of symmetry conditions along the plane of symmetry.

Although no pressure boundary conditions are required, projection methods make use of a gauge
variable � to ensure satisfaction of an approximate solenoidal velocity field. All gauge variable
boundary conditions are homogeneous Neumann conditions: n·∇�|�� =0 except at the outflow
boundary where Zhu [11] recommends ��/��=0. This last condition may be integrated along
the outflow part of the boundary to yield �=constant. The condition �(X, y, t)=0 at outflow is
sometimes implemented in the literature.

Initial densities and viscosities were constant in each fluid and all initial pressures were zero.
Initially, we prescribe u0= i in the ambient fluid and u0=0 in the droplet.

3. GODUNOV MARKER-PARTICLE PROJECTION SCHEME

System (1) is solved using the approximate Godunov projection method [9] with second-order
Crank–Nicolson time discretization. Given the strengths and weaknesses of the various projection
methods, we choose to use a modified version of the incremental pressure projection method of
Rider et al. [7]. The original method uses a time-lagged discretization of the pressure gradient
in the momentum equation, sets the intermediate velocity boundary conditions to the physical
boundary conditions and uses a homogeneous Neumann condition in the projection stage of the
algorithm. The modification to this method uses a corrected pressure update to ensure consistency
and incorporates a variable density.
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In semi-discrete form, this results in the following pressure-corrected, variable density, second-
order approximation of the equations in (1) at time tn:

1. Step 1: Given un , ∇ pn−1/2, �n , �n , Cn calculate (u·∇u)n+1/2.
2. Step 2: update Cn+1 so that

�n+1=Cn+1+(1−Cn+1)�ad, �n+1=(Cn+1+(1−Cn+1)/�ad)
−1 in �

so that �n+1/2=(�n+�n+1)/2 and �n+1/2=(�n+�n+1)/2.
3. Step 3: solve for the intermediate velocity:(

I− �t

2Re
�n+1/2Ln+1/2

�

)
u∗ =

(
I+ �t

2Re
�n+1/2Ln+1/2

�

)
un

−(�t ((u·∇u)n+1/2+�n+1/2∇ pn−1/2−�n+1/2Fn+1/2
v ) in � (2)

4. Step 4: project the result:

Ln+1/2
� �n+1= 1

�t
∇ ·u∗ in � (3)

followed by

un+1=u∗−�t�n+1/2∇�n+1 in �̄ (4)

5. Step 5: update the pressure gradient:

∇ pn+1/2=∇ pn−1/2+∇�n+1− �t

2Re
Ln+1/2

� (�n+1/2∇�n+1) in �̄ (5)

where Fv =�(x)�∇�/We[�]〈�〉 and the Laplacian operators are given by L�w=∇ ·�(∇w+
(∇w)T), for some vectorw, and L��=∇ ·�∇�, for some scalar �, �=1/�, �n+1/2=(�n+�n+1)/2
and �̄=�∪��. The (u·∇u)n+1/2 term represents an approximation to the nonlinear advection
term at the half time level and is the one detailed in [9]. The velocity at the half-time level has also
been used in the viscous term and is given by un+1/2=(un+u∗)/2. The extra pressure correction
term −(�t/2Re)L��∇� was obtained by eliminating the intermediate velocity in the momentum
equation (2) using the update given by (4).

Note that in the projection method described above, the time-updated density and viscosity
are required in Step 1 where only the values at the nth time level are known. This is calculated
with the use of the GMPPS [6] where fluid particles are advanced forward in time to track
individual fluid phases while carrying particle colour information. The time-updated volume
fraction for the fluid phase Cn+1 is then obtained by interpolation from surrounding fluid
particles of that phase. This provides the solution of the advection equation for the volume
fraction.

Since there are discontinuities in the physical properties, such as density and viscosity, an
element of smoothing is necessary. In practice, the volume fraction is smoothed by forming the
convolution of C with a kernel K (x;�) that becomes the surface delta function as �→0 [8].
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4. NUMERICAL RESULTS

Tests of the GMPPS method have been performed elsewhere, see [6, 8], and will not be repeated
here. The following droplet break-up simulations were performed on a non-dimensionalized compu-
tational domain of five times the initial droplet diameter, as used in [3, 4], in each direction
with a 1282 grid. Each simulation shows the deformation of a droplet with: �d=9200kg/m3,
D0=9mm, �d=2.82×10−4 Pas within an ambient medium: �a=996kg/m3, �a=8.54×10−4 Pas
and an interfacial surface tension coefficient of �ad=0.4N/m. For all the simulations presented the
Ohnesorge number Oh=5×10−5. Since Oh<0.1, viscous effects play a negligible role. The
Weber number was varied through three different initial relative velocities U0=0.73,0.82 and
2.12m/s corresponding to We=12,15 and 100; these results are shown in Figures 1–3.

These Weber numbers were chosen to allow a comparison to the results of Duan et al. [3]:
We=12,15 and Zaleski et al. [4]: We=100. The results for the We=12,15 cases show good
qualitative agreement, although the present results are more detailed and relate better to theWe=10
result of Zaleski et al. [4]. The detailed break-up mechanism of the We=100, t=0.019s result
shows qualitative similarity to the equivalent simulation of [4], which is the start of the sheet

Figure 1. Droplet break-up simulations for an initial Weber number of Wei =12.

Figure 2. Droplet break-up simulations for an initial Weber number of Wei =15.
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Figure 3. Droplet break-up simulations for an initial Weber number of Wei =100.

stripping regime. Note that the drawn-out arms of the droplet seen in Figure 2 for We=15 : t=
0.037,0.05s and in Figure 3 for We=100 : t=0.014,0.019s curve inward towards the droplet;
this is a consequence of the chosen boundary conditions. In addition, although simulated results
of the We=12,15 cases are representations of experimentally obtained bag break-up, they show
sheet stripping, such mechanisms are not expected to become obvious unless much higher grid
resolutions are used [4]. It is also evident from the present simulations that the flow demonstrates
clear symmetry about a line drawn through the centre of the droplet indicating the ability of the
method to maintain the symmetry inherent to the problem. It is clear that the GMPP scheme may
be used to simulate the droplet break-up mechanism and should provide better approximations for
higher grid resolution and an extension to three dimensions.
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